Maximum-Likelihood Estimate for Distance Matrix

نویسنده

  • LAN WEI
چکیده

The structure of relationship among subjects is an interesting topic in many social studies, especially phylogeny. The between-subject relationships are commonly measured by similarity or dissimilarity metrics and represented using a distance matrix. Based on this distance matrix, a tree can be constructed to characterize the overall structure of inferred relationships among all subjects. Currently, there are various projection methods that can estimate a tree from an observed distance matrix. However, there exists no broad agreement about objective criteria to quantify the goodness-of-fit of the inferred tree. In this study, we suggest a new method that improves current tree projection algorithms by finding the global maximum of the likelihood in the whole projection space. Our method is based on a log likelihood function for distance matrices in a closed form where the Newton-Raphson algorithm can be directly applied. By perturbing the observed distance matrices, our procedure computes the deviance of the fitted tree and identifies the optimal tree. Empirical studies were carried out using two widely used tree projection algorithms, namely Neighbor-Joining (NJ) and Unweighted Pair Group Method with Arithmetic Mean (UPGMA). Our results suggest that the proposed method can improve the estimate of the tree. Information about building access for persons with disabilities may be obtained in advance by calling Sandra Romero at 773.702-0541 or by email ([email protected]).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش‌های طبقه‌بندی‌کننده حداکثر مشابهت و حداقل فاصله از میانگین در تهیه نقشه پوشش اراضی (مطالعه موردی: استان اصفهان)

Land cover maps derived from satellite images play a key role in regional and national land cover assessments. In order to compare maximum likelihood and minimum distance to mean classifiers, LISS-III images from IRS-P6 satellite were acquired in August 2008 from the western part of Isfahan. First, the LISS-III image was georeferenced. The Root Mean Square error of less than one pixel was the r...

متن کامل

Comparison of Local and Non-Local Methods in Covariance Matrix Estimation by Using Multi-baseline SAR Interferometry and Height Extraction for Principal Components with Maximum Likelihood Approach

By today, the technology of synthetic aperture radar (SAR) interferometry (InSAR) has been largely exploited in digital elevation model (DEM) generation and deformation mapping. Conventional InSAR technique exploits two SAR images acquired from slightly different angles, in which the information of elevation and deformation can be captured through processing of the phase difference of the image...

متن کامل

Factors affecting the errors in the estimation of evolutionary distances between sequences.

Phylogenetic methods that use matrices of pairwise distances between sequences (e.g., neighbor joining) will only give accurate results when the initial estimates of the pairwise distances are accurate. For many different models of sequence evolution, analytical formulae are known that give estimates of the distance between two sequences as a function of the observed numbers of substitutions of...

متن کامل

Evaluation of LISS-III Sensor Data of IRS-P6 Satellite for Detection Saline Soils (Case Study: Najmabad Region)

Soil Salinity has been a large problem in arid and semi arid regions. Preparation of such maps is useful for Natural resource managers. Old methods of preparing such maps require a lot of time and cost. Multi-spectral remotely sensed dates due to the broad vision and repeating of these imageries is suitable for provide saline soil maps. This investigation is conducted to provide saline soil map...

متن کامل

Nonparametric Maximum Likelihood Density Estimation and Simulation-Based Minimum Distance Estimators

Indirect inference estimators (i.e., simulation-based minimum distance estimators) in a parametric model that are based on auxiliary nonparametric maximum likelihood density estimators are shown to be asymptotically normal. If the parametric model is correctly specified, it is furthermore shown that the asymptotic variance-covariance matrix equals the inverse of the Fisher-information matrix. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011